Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
researchsquare; 2023.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2592194.v1

ABSTRACT

Background Patients who were SARS-CoV-2 infected could suffer from newly incidental conditions in their post-acute infection period. These conditions, denoted as the post-acute sequelae of SARS-CoV-2 infection (PASC), are highly heterogeneous and involve a diverse set of organ systems. Limited studies have investigated the predictability of these conditions and their associated risk factors. Method In this retrospective cohort study, we investigated two large-scale PCORnet clinical research networks, INSIGHT and OneFlorida+, including 11 million patients in the New York City area and 16.8 million patients from Florida, to develop machine learning prediction models for those who are at risk for newly incident PASC and to identify factors associated with newly incident PASC conditions. Adult patients aged  20 with SARS-CoV-2 infection and without recorded infection between March 1st, 2020, and November 30th, 2021, were used for identifying associated factors with incident PASC after removing background associations. The predictive models were developed on infected adults. Results We find several incident PASC, e.g., malnutrition, COPD, dementia, and acute kidney failure, were associated with severe acute SARS-CoV-2 infection, defined by hospitalization and ICU stay. Older age and extremes of weight were also associated with these incident conditions. These conditions were better predicted (C-index >0.8). Moderately predictable conditions included diabetes and thromboembolic disease (C-index 0.7-0.8). These were associated with a wider variety of baseline conditions. Less predictable conditions included fatigue, anxiety, sleep disorders, and depression (C-index around 0.6). Conclusions This observational study suggests that a set of likely risk factors for different PASC conditions were identifiable from EHRs, predictability of different PASC conditions was heterogeneous, and using machine learning-based predictive models might help in identifying patients who were at risk of developing incident PASC. 


Subject(s)
Anxiety Disorders , Thromboembolism , Dementia , Pulmonary Disease, Chronic Obstructive , Depressive Disorder , Severe Acute Respiratory Syndrome , Diabetes Mellitus , Malnutrition , Acute Kidney Injury , COVID-19 , Sleep Wake Disorders , Fatigue
2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.12.18.22283646

ABSTRACT

Background An increasing number of studies have described new and persistent symptoms and conditions as potential post-acute sequelae of SARS-CoV-2 infection (PASC). However, it remains unclear whether certain symptoms or conditions occur more frequently among persons with SARS-CoV-2 infection compared with those never infected with SARS-CoV-2. We compared the occurrence of specific COVID-associated symptoms and conditions as potential PASC 31 to 150 days following a SARS-CoV-2 test among adults ([≥]20 years) and children (<20 years) with positive and negative test results documented in the electronic health records (EHRs) of institutions participating in PCORnet, the National Patient-Centered Clinical Research Network. Methods and Findings This study included 3,091,580 adults (316,249 SARS-CoV-2 positive; 2,775,331 negative) and 675,643 children (62,131 positive; 613,512 negative) who had a SARS-CoV-2 laboratory test (nucleic acid amplification or rapid antigen) during March 1, 2020-May 31, 2021 documented in their EHR. We identified hospitalization status in the day prior through the 16 days following the SARS-CoV-2 test as a proxy for the severity of COVID-19. We used logistic regression to calculate the odds of receiving a diagnostic code for each symptom outcome and Cox proportional hazard models to calculate the risk of being newly diagnosed with each condition outcome, comparing those with a SARS-CoV-2 positive test to those with a negative test. After adjustment for baseline covariates, hospitalized adults and children with a positive test had increased odds of being diagnosed with [≥]1 symptom (adults: adjusted odds ratio[aOR], 1.17[95% CI, 1.11-1.23]; children: aOR, 1.18[95% CI, 1.08-1.28]) and shortness of breath (adults: aOR, 1.50[95% CI, 1.38-1.63]; children: aOR, 1.40[95% CI, 1.15-1.70]) 31-150 days following a SARS-CoV-2 test compared with hospitalized individuals with a negative test. Hospitalized adults with a positive test also had increased odds of being diagnosed with [≥]3 symptoms (aOR, 1.16[95% CI, 1.08 - 1.26]) and fatigue (aOR, 1.12[95% CI, 1.05 - 1.18]) compared with those testing negative. The risks of being newly diagnosed with type 1 or type 2 diabetes (aHR, 1.25[95% CI, 1.17-1.33]), hematologic disorders (aHR, 1.19[95% CI, 1.11-1.28]), and respiratory disease (aHR, 1.44[95% CI, 1.30-1.60]) were higher among hospitalized adults with a positive test compared with those with a negative test. Non-hospitalized adults with a positive SARS-CoV-2 test had higher odds of being diagnosed with fatigue (aOR, 1.11[95% CI, 1.05-1.16]) and shortness of breath (aOR, 1.22[95% CI, 1.15-1.29]), and had an increased risk (aHR, 1.12[95% CI, 1.02-1.23]) of being newly diagnosed with hematologic disorders (i.e., venous thromboembolism and pulmonary embolism) 31-150 days following SARS-CoV-2 test compared with those testing negative. The risk of being newly diagnosed with certain conditions, such as mental health conditions and neurological disorders, was lower among patients with a positive viral test relative to those with a negative viral test. Conclusions Patients with SARS-CoV-2 infection were at higher risk of being diagnosed with certain symptoms and conditions, particularly fatigue, respiratory symptoms, and hematological abnormalities, after acute infection. The risk was highest among adults hospitalized after SARS-CoV-2 infection.


Subject(s)
Pulmonary Embolism , Acute Disease , Respiratory Tract Diseases , Venous Thromboembolism , Dyspnea , Diabetes Mellitus, Type 2 , Hematologic Diseases , Nervous System Diseases , COVID-19 , Fatigue
3.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.05.21.22275412

ABSTRACT

The post-acute sequelae of SARS-CoV-2 infection (PASC) refers to a broad spectrum of symptoms and signs that are persistent, exacerbated, or newly incident in the post-acute SARS-CoV-2 infection period of COVID-19 patients. Most studies have examined these conditions individually without providing concluding evidence on co-occurring conditions. To answer this question, this study leveraged electronic health records (EHRs) from two large clinical research networks from the national Patient-Centered Clinical Research Network (PCORnet) and investigated patients’ newly incident diagnoses that appeared within 30 to 180 days after a documented SARS-CoV-2 infection. Through machine learning, we identified four reproducible subphenotypes of PASC dominated by blood and circulatory system, respiratory, musculoskeletal and nervous system, and digestive system problems, respectively. We also demonstrated that these subphenotypes were associated with distinct patterns of patient demographics, underlying conditions present prior to SARS-CoV-2 infection, acute infection phase severity, and use of new medications in the post-acute period. Our study provides novel insights into the heterogeneity of PASC and can inform stratified decision-making in the treatment of COVID-19 patients with PASC conditions.


Subject(s)
COVID-19
4.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.05.21.22275420

ABSTRACT

Recent studies have investigated post-acute sequelae of SARS-CoV-2 infection (PASC) using real-world patient data such as electronic health records (EHR). Prior studies have typically been conducted on patient cohorts with small sample sizes 1 or specific patient populations 2,3 limiting generalizability. This study aims to characterize PASC using the EHR data warehouses from two large national patient-centered clinical research networks (PCORnet), INSIGHT and OneFlorida+, which include 11 million patients in New York City (NYC) and 16.8 million patients in Florida respectively. With a high-throughput causal inference pipeline using high-dimensional inverse propensity score adjustment, we identified a broad list of diagnoses and medications with significantly higher incidence 30-180 days after the laboratory-confirmed SARS-CoV-2 infection compared to non-infected patients. We found more PASC diagnoses and a higher risk of PASC in NYC than in Florida, which highlights the heterogeneity of PASC in different populations.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL